November 21, 2016 / by Vikram Sachdeva / In booklist

MFCC-GMM based accent recognition system for Telugu speech signals

Abstract




Speech processing is very important research area where speaker recognition, speech synthesis, speech codec, speech noise reduction are some of the research areas. Many of the languages have different speaking styles called accents or dialects. Identification of the accent before the speech recognition can improve performance of the speech recognition systems. If the number of accents is more in a language, the accent recognition becomes crucial. Telugu is an Indian language which is widely spoken in Southern part of India. Telugu language has different accents. The main accents are coastal Andhra, Telangana, and Rayalaseema. In this present work the samples of speeches are collected from the native speakers of different accents of Telugu language for both training and testing. In this work, Mel frequency cepstral coefficients (MFCC) features are extracted for each speech of both training and test samples. In the next step Gaussian mixture model (GMM) is used for classification of the speech based on accent. The overall efficiency of the proposed system to recognize the speaker, about the region he belongs, based on accent is 91 %.

Link to Paper